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Abstract 

The Non-local Thermodynamic Equilibrium Statistical Hot Spot Model 

(NLTE SHS), a new model for explosive detonation, is described. In this model, 

the formation, ignition, propagation, and extinction of hot spots is explicitly 

modeled. The equation of state of the explosive mixture is treated with a non-

local equilibrium thermodynamic assumption. A methodology for developing 

the parameters for the model is discussed, and applied to the detonation velocity 

diameter effect. Examination of these results indicates where future 

improvements to the model can be made. 

I. Introduction  

A high explosive is an energetic material that is capable of releasing its 

stored energy in a time scale capable of sustaining a shock wave known as a 

detonation wave. The presence and need for energy localization in the ignition 

                                                 
* This work was performed under the auspices of the U.S. Department of Energy 

by University of California, Lawrence Livermore National Laboratory under 

Contract W-7405-Eng-48.  



and detonation of high explosives is a corner stone in our understanding of 

explosive behavior. This energy localization, known as hot spots, provides the 

match that starts the energetic response that is integral to the detonation.  

Let us consider the processes that occur during the shock to detonation 

process. First, it is clear that the processes involved in ignition must be present 

during detonation, since the newly shocked material has no way of 

distinguishing between a shock loading from a flyer plate or a continuing 

detonation. The shock process deposits a significant amount of energy in the 

reactant. There will be two types of deposited energy: uniform and localized. The 

uniform energy deposition arises from the viscous dissipation of the shock 

progressing over uniform material. This process will heat the energetic material 

and can potentially cause reaction, if the shock is strong enough. Even when not 

detonating, the bulk temperature can be high enough to bulk reactivity to cause 

the complete decomposition of the explosive. However, for many explosives of 

interest, the shock required to detonate a uniform crystal would be stronger than 

that produced by the detonation of the explosive itself. This implies that in order 

for the detonation to progress, there must be another mechanism to increase the 

rate of energy release. Localized energy deposition, known as a hot spot, arises 

from a variety of defects in the explosive material. All defects are pre-existing, 

and can in principle be counted. Therefore, by understanding the number and 

type of defects, one could modify the formulation process of the explosive to 

change its properties. Finally, after the solid reactants have been transformed 



into gaseous intermediates, there can be longer diffusion controlled reactions 

that are required to explain certain long time behaviors. 

In our model, we use the life cycle of a hot spot to predict explosive 

response. This life cycle begins with a random distribution of inhomogeneities in 

the explosive that we describe as a potential hot spot. A shock wave can 

transform these into hot spots that can then grow by consuming the explosive 

around them. The fact that the shock wave can collapse a potential hot spot 

without causing ignition is required in order to model phenomena like dead 

pressing. The burn rate of the hot spot is taken directly from experimental data. 

In our approach we do not assume that every hot spot is burning in an identical 

environment, but rather we take a statistical approach to the burning process. We 

also do not make a uniform temperature assumption in order to close the 

mixture equation of state, but track the flow of energy from reactant to product.  

In Section II we define NLTE SHS model.  In Section III we describe the 

process for defining the parameters used in the model. In Section IV we show 

results of the model as applied to the detonation velocity diameter effect, and 

conclude in Section V. 



II. Non Local Thermodynamic Equilibrium Statistical Hot 
Spot Model 

PROBABILISTIC HOT SPOT FORMULATION 

Nichols and Tarver1 initially described the statistical hot spot formulation. 

The first phase in constructing the statistical hot spot model is the consideration 

of the distribution of those hot spots. First, consider the probability Pr that single 

hot spot of radius R will have reacted at a given location in a volume V in the 

explosive. This probability is given by: 

V
RPr 3

4 3π
=  (1) 

If there are NR of these hot spots randomly distributed in space, then the 

probability that a given location has not reacted Pnr is simply the product of the 

independent probabilities. Assuming that the hot spots are independently 

located, Pnr is defined as: 
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Taking the limit where the volume becomes large but the hot spot density 

remains fixed, Eq. (2) becomes: 
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Finally, the combined probability of a region not having been reacted 

Pnr(R) is simply the product of the probabilities associated with each hot spot 

radius. Therefore the final expression for Pnr is: 
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The probability of not yet reacting is simply the mass fraction of the 

reactant in a reactive flow formulation. The probabilistic formulation makes it 

easier to consider a variety of different possibilities. For example, a similar line of 

reasoning can be used for two-dimensional hot spots (hotlines) and one-

dimensional hot spots (hotplanes). The latter would be useful for the modeling of 

shear banding as an ignition source, for example. If all of such ignition 

mechanisms could be defined, all that would be required for a complete hot spot 

model is to multiply their probability functions together. 

HOT SPOT DENSITY MODEL 

The process derived in the previous section defines a mechanism for 

connecting the probability that some quantity of explosive has been reacted to 

the density distribution of hot spots. We define the probability density of the hot 

spots as: 
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where ρs(α,ω) is the number density of hot spots that ignited at time α, and died 

at time ω. The Dirac-delta functions are used to define the size of the hot spot 

with the assumption that the initial hot spot size is ε, and that it then burns at a 

burn rate v out from that initial spot. The first term ρA(R,t)  represents the 

population of hot spots of size R that are still growing (active) at time t. The 

second term ρD(R,t) represents the population of hot spots of size R that have 

stopped growing  (died) by time t. It is important to remember that even though 

a hot spot may stop burning, the material that has burned within that hot spot 

must still be counted as reacted.  

Let us now define the following projections of the density function: 
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The h term is just the negative of the log of the probability defined in Eq. (4). The 

g and f terms are the two- and one-dimensional active projections of the density 



function, respectively. The number of hot spots that are active at time t is ( )tρA , 

and ρB(t) is the number of hot spots created at time t. In the current model, it is 

assumed that all hot spots active at time t have the same rate of death µ(t), that is: 
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With these projections, it is possible to construct a set of differential 

equations to couple the high order reactant mass fraction with the much simpler 

active hot spot density. 
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PROPERTIES OF THE HOT SPOT DENSITY MODEL 

It is interesting to note some of the limits associated with the SHS model 

and compare them with the standard reactive flow models of Tarver. If we 

assume that the shock promptly ignites the hot spots, then the initial rate of 

fraction reacted x will progress as 3
2
xx ∝& . This is in accord with most of the 

reactive flow models. However, at long times, the rate of reaction will progresses 

as ( ) ( )xxx −−−∝ 1ln1& . Note that this rate expression cannot be formulated as a 

power-law, as is the standard scheme in reactive flow rate laws. In fact, the SHS 



model is slower at finally consuming the reactant than any power law 

dependence less than 1. On the other hand, a form factor reaction with 

coefficients 2/3 and 0.7, i.e. ( ) 7.3
2

1 xxx −∝& , provides a good fit through the peak 

in the reactivity and is only slightly faster during the completion phase of the 

reaction. 

IGNITION MODEL 

In order to complete the set of equations defined in the previous section, 

we must define the rate at which hot spots are created. In order to model the 

explosive process, it is necessary to choose an ignition model that can encompass 

a variety of phenomena associated with high explosives. We begin by defining 

the initial density of potential hot spots ρP0. These potential hot spots can be 

anything from defects in the crystal lattice to voids in the region between the 

explosive grains. For the current model, we only limit ourselves in that the 

potential hot spot must transform into a roughly spherical hot spot. Most 

postulated hot spot formation mechanisms involving void collapse predict that 

the spherical hot spots form upon full collapse2.  Other potential hot spot 

formation mechanisms, such as shear banding, would transform into roughly 

planar hot spots and thus are not considered in this treatment. The shock process 

compresses these potential hot spots. If they are compressed to a sufficiently high 

temperature, they will start to react (a hot spot). If the process is too weak, then 

the potential hot spot will be destroyed without creating a hot spot. Without 



such a process, any sufficient compression of the explosive would lead to 

reaction, even that from an isostatic press.  However, since explosives do have 

strength, there must be sufficient force to overcome that internal void strength 

before any changes to the potential hot spot density can occur. The following 

phenomenological ignition model captures these features. 
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Here K(p) is the rate of potential hot spot transformation, and K(PA) is the 

constant death rate for potential hot spots. It is the rate of transformation at the 

pressure PA when the first hot spots actually start igniting. P0 is the ignition rate 

threshold pressure that represents the internal resistance to void collapse. To 

prevent unrealistically large collapse rates during numerical pressure spikes, P* 

is defined as the saturation pressure. H is the heavy side step function, which is 

zero for all arguments less than zero and one for everything else. We originally 

envisioned a compression rate dependent ignition rate, but such a rate can be 

extremely mesh-size dependent. More complex ignition models can be 

formulated as this model evolves. 



NON-LOCAL THERMODYNAMIC EQUILIBRIUM CHEMICAL MATERIAL 

MODEL 

Having defined the mechanism for reaction of the explosive, we need to 

define the model for the equation of state of the mixture of reactants and 

products. In our model, the extent of composition change and the hydrodynamic 

work are conducted simultaneously and self consistently. At the beginning of a 

time step, the state of the material is given by the mass fractions {xi}, specific 

energies (energy per reference volume) {ei}, and specific relative volumes 

(volume per reference volume) {vi} of each species i. We also can define the total 

energy and volume of the system: 
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where 0ρ  is the reference density of the chemical material, and 0
iρ  is the 

reference density of the ith species. We need to follow the energy of the system 

through the reactivity, heat and work phases. By defining xij as the change 

increase in the mass fraction of the ith species that came from the jth species, we 

have that the mass fraction change is 

∑∑ −=∆
j

ji
j

iji xxx  . (14) 

The NLTE chemical material model is solved implicitly. Several passes are 

conducted until self-consistency in the extent of reaction and pressure 



equilibrium between all of the species is achieved. Each pass is broken into four 

phases. The first phase calculates the extent of reaction based on the average of 

the initial and final pressures and temperatures of the previous pass. For the 

initial pass, only the initial condition is used to determine the rates. The second 

phase imputes half of the composition change. The splitting of the application of 

the composition change before and after the work phase is what allows this 

model to maintain second order accuracy. The mass, energy, and volume of each 

of the reacting species is moved from the reactant to the product. So for the mass, 

volume, and energy we get the following set of equations: 
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It is important to note that the process from going from state “t” to state “II” 

conserves total mass, volume and energy. It can be thought of separating an 

appropriate amount of mass with its energy and volume and transferring it to 

that of the receiving species. 

The third phase of each pass changes the volume of each species while 

holding the composition fixed. This last constraint implies xiII = xiIII. Thus, with 

iω  the external heat source, we have for each species: 
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where pi is the pressure and a function of the energy and volume, and qi is the 

artificial viscosity as determined by the size of the element, the change in the 

relative volume, the sound speed, and the time step length. In general, it has 

been found that the species q factors should be turned off, as they can give rise to 

extremely high temperatures during various stages of the iteration. These high 

temperatures can lead to large reaction rates, causing even more relative volume 

change for the reacting species. These two effects compound each other to cause 

a numerical instability, especially if one includes a quadratic q for the species. 

This discussion does not apply to the q applied to the element, but only to that 

specifically related to the species. 

Finally, the fourth phase of each pass imputes the final half of the 

composition change, again with overall conservation of mass, volume, and 

energy: 
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We also require that the internal energy change calculated by the sum of 

the species processes be equal to the change of the total internal energy. That 

implies the following requirement: 
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The artificial viscosity q will be divided into two parts: qe the artificial viscosity 

derived from the element motion, and qi that derived from internal processes. In 

our current model, the assumption is made that the external energy and qedv 

work associated with the zone is distributed equally to each species by their 

mass: 
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Once the energy and volume have been calculated for the “ tt ∆+ ” state, we 

calculate the pressure and temperature using the equation of state for each 

species. These state variables are used to calculate the reaction rates in the next 

phase 1. Note that these phases define the process by which the NLTE chemical 

element proceeds from its initial state to its final state. We have still not 

completely defined the path however. In particular, the relative volume at state 

“III” is still a free parameter within the constraint that the total volume sum must 

still be satisfied. However, it is these values that are directly tied to the final 

volume and energy that is used to calculate the pressure. We require pressure 

equilibrium in the NLTE chemical material at the end of the time step. Therefore, 

it is necessary to determine how the change of the state “III” volume changes the 

final species pressure. Using a the standard Newton-Raphson solution technique 

for pressure equilibration, we have that the equilibrium pressure ttP ∆+  is: 
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where variables with an underline are vectors of the species values. The kernel of 

this formula is the matrix of the change in the pressure of the ith species with the 

change in the relative volume of the jth species. Given that the number of species 

in this model is arbitrary, that the indicated matrix inverse would be number of 

species by number of species, and that the non-diagonal contributions go to zero 

as the change in concentration goes to zero, we replace the matrix inversion with 

its zero reaction limit. In order to insure iterative convergence, the maximum 

extent of reaction during any time step must be limited. This is done by time step 

constraint. With this simplification, the vp ∂∂  term becomes diagonal and that 

for the jth species becomes: 
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Finally, the last variable that needs to be identified is the internal artificial 

viscosity qi. For that we note that p+q at the end of the time step for the entire 

element needs to be the appropriate sum of those for each component as work 

was begin performed. Thus: 
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Having described the process for each pass, the code iterates on the vjIII 

until pressure and reaction equilibration have occurred. 

III. Model Parameterization 

We have defined a total of 8 parameters, not counting those associated 

with the equation of state, for the statistical hot spot model. They are: P0, P*, A, µ, 

v, PA, ρP0, and ε. P0 is clearly related to the yield strength of the explosive, and so 

we will use the yield strength in our model. The burn velocity v can be 

experimentally determined by any of the standard burn rate measurement 

techniques, such as strand-burner and diamond anvil experiments. The value of 

PA should be chosen to match explosive shock recovery experiments, so that the 

value of PA is set equal to the value of the shock pressure that just begins to ignite 

the explosive. 

A heuristic argument can be used to determine ρP0, and ε. If one assumes 

that the total initial hot spot volume will equal the initial void volume and that 

enough hot spots need to be created so that when they burn with velocity v at the 

detonation pressure pD, they will consume the entire explosive in the reaction 

zone time τ and initial void density ρv, then: 
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Another heuristic argument can be applied to the ignition pre-factor A 

and P*. It is reasonable to assume that the rate of collapse of the void regions is 

proportional to the product of the void radius and the particle velocity u in the 

shock wave. For relatively low pressures, we can Taylor expand the volume 

change using the adiabatic compressibility, and get: 
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where ρ0 is the initial density, and c is the reference sound speed. Comparing to 

the ignition definition in the limit of small (p-P0), we find 
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Although it might be tempting to use an ignition form defined by the 

particle velocity, the complexities associated with making it work under the 

variety initial conditions would be daunting. For example, changes in 

temperature would necessitate a change in the reference density within the root 

sign. Without such a change, hot systems could never ignite. We can handle the 

natural curvature that comes out of this formulation by an appropriate choice of 

P*. 



Reactant and product equations of state are needed to describe the states 

attained during shock compression. The Jones-Wilkins-Lee (JWL) equation of 

state is used for the reactant with typical parameters for an HMX-based plastic 

bonded explosive. 
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where P is pressure, V is relative volume, E is the internal energy, ω is the 

Gruneisen coefficient, and A, B, R1, and R2 are constants. For a typical HMX-

based plastic bonded explosive, the initial density is 1.85 g/cm3, R1 = 14.1, R2 = 

1.41, ω = 0.8938, A = 9522 Mbar, and B = 0.05944 Mbar. This JWL equation fits the 

measured reactant Hugoniot data at low shock pressures and the von Neumann 

spike data at high pressures3. The reaction products are described by LEOS tables 

fit to product equation of state calculated by the CHEETAH chemical 

equilibrium code4.  

IV. Results 

As discussed in the previous section, the ignition and growth of reaction 

model has eight parameters: P0, P*, A, µ, v, PA, ρP0, and ε. The parameters for the 

model developed here are listed in Table 1. P0 is the ignition rate threshold 

pressure and is set to the Hugoniot elastic limit for HMX5. The activation 

threshold has been set to twice the Hugoniot elastic limit. The reaction growth 

rate v is assumed to be a function of pressure as measured experimentally in 



strand burner6 and diamond anvil cells on pure HMX7. This pressure versus 

burn rate function is shown in Table 1. The initial hot spot diameter ε and initial 

number of potential hot spot sites ρP0 are derived from the burn rate at the 

detonation conditions based on a reaction time set to match experimental results.  

We examine the detonation velocity diameter effect with the statistical hot 

spot model. In order to determine the detonation velocity, two-dimensional axi-

symmetric problems at the requisite diameters were created. The length to 

diameter ratio was set to 4, and the calculation was run for 10 microseconds 

times the radius in cm. This generally ensured that the shock wave has 

proceeded through approximately 90% of the length. The cylinder of explosive 

was given a velocity of .1 mm/microsecond into unmovable stonewall. A mesh 

resolution of 1000 elements per cm was used for most of the work shown here. 

Multiple resolutions were used to confirm mesh convergence. In order to capture 

the locus of the detonation front, the cylinder was divided into two regions, one 

a single element thick running along the axis. The location of the highest 

pressure in this region was then written to a history file for processing. The 

detonation velocity was calculated by a least squares fit to the final eighth of the 

time steps. 

Two models are shown in Table 1. The first model developed uses a burn 

rate pressure exponent of ~0.75 that essentially matches the experimental data. 

The second model follows the higher-pressure burn rate and then continues with 



an exponent of 2 to the detonation pressure. The detonation velocity versus 

cylinder diameter for both models and the experimental results of A. W. Campbell 

and Ray Engelke8 are plotted in Figure 1. Although model 1 reproduces the 

detonation velocity diameter effect for large diameters, the detonation continues 

to propagate even at small diameters, contrary to experimental observation. This 

behavior is typical of all reaction models that use a pressure burn rate exponent 

of 0.75. Essentially, the burn rate does not change rapidly enough to cause the 

classical detonation failure, but instead the detonation velocity steadily drops 

until it merges with the sound speed. The fact that this model does not properly 

fail at small diameters leads one to believe that there are processes that are not 

being captured in this model. Another interesting feature is that for the model 1 

like systems, the function of the detonation velocity to inverse diameter is 

essentially a straight line.  

On examination of the results for model 1, it became clear that some other 

process needed be present to reproduce the experimental results. One such 

mechanism would be the bulk heating of the explosive by the detonation wave. 

To test this idea, we augmented the hot spot reaction with thermal reactions 

based on the reaction rate parameters of Tarver et. al.9. For the current equation 

of state system, the non-linearity of the thermal reaction rated caused the 

reactants to transform into products at rates substantially higher than needed. 

Aside from causing a significant reduction in the time step, this mechanism led 

to significant numerical instabilities due to the non-linearity of the chemistry. 



 One issue that could affect the model is the burn rate function. The 

experimental data that we use was collected at room temperature. Although the 

burn rate tends to exhibit weak temperature dependence, temperature changes 

in the order of a thousand degrees will probably result in significant change in 

the burn rate. An effective burn rate with a higher-pressure exponent would 

represent the temperature increased burn rate, since the temperature increases as 

we increase the shock pressure. This is the basis of model 2. Model 2 slightly 

under predicts the detonation velocity in the intermediate diameters until just 

before detonation failure. The model does reproduce the classic detonation 

failure diameter. 

V. Conclusion 

In this paper, we have described a new detonation model for HMX. The 

equations of state models are based on current best practice. The reaction 

parameters have been based available reactant experimental data. The mixture 

equation of state equilibrates the pressure of each species, but does not 

equilibrate the temperature. Instead, we track the flow of energy as the 

composition changes from one species to another. These keeps the reactants cold 

while the products will be hot, in keeping with the physical model. These models 

were applied to the detonation velocity diameter effect, to good result. 

One issue that needs to be addressed is equation of state of the reactant 

species at shock conditions. The standard schemes for calibrating the EOS of 



reactants are capable of determining the pressure at shock compression, but the 

temperature is more difficult. An improved EOS for temperature is necessary to 

add a bulk reactivity contribution to the detonation model. 

Further investigation into the effect of multiple hot spot sizes should be 

conducted. A common postulate is that small voids would be more difficult to 

ignite than large voids. Higher shock pressures would ignite significantly more 

hot spots than lower pressure. This would increase the effective burn rate at high 

pressure, as there would be more sites to burn the reactant. As was pointed out, a 

higher-pressure exponent is necessary to reproduce the detonation failure data. 

Finally, although we have focused on the high pressure end of shock 

response, it should be pointed out that these models are capable of modeling the 

process known as dead pressing, where an initial low amplitude shock 

desensitizes the explosive, making it more difficult for a second shock wave to 

transition to detonation. 
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Table 1. Reaction Rate Parameters

Parameter Value (Model 1) Value (Model 2) 
P0 (GPa) 0.6 0.6  
PA(GPa) 1.2 1.2 
P*(GPa) 10 10 
Void Fraction 0.02 0.02 
τ(µs) 0.009 0.009  
ε (cm) 8.63581E-06 1.0531e-4 
ρP0 (cm-3) 7.41266E+12 4.087101054e9 
A (cm-µs/g) 51741.2662 4242.78383 
D(µs-1) 292.8750917 24.0157575 
µ (µs-1) 1 1  

   
Pressure 
(GPa) 

Burn Rate 
(cm/µs) 

Burn Rate 
(cm/µs) 

0.0001 2.35E-07 2.35E-07 
0.1 5.00E-05 5.00E-05 
3. 7.00E-04 7.00E-04 
7.5  2.50E-03 
10  4.00E-03 
15.  9.00E-03 
20 2.85E-3  
37. 4.1E-3 5.00E-02 
100.  5.00E-02 
200 1.6E-2  



Figure 1. Detonation Velocity as a function of inverse cylinder diameter. The solid 
square dots are the experimental results of Campbell and Engelke. Model 1 has a 
explosive burn rate exponent of approximately 0.75, while model two has  a higher 
exponent above 3 GPa. 
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